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BUCKLING OF IMPERFECT CYLINDERS 

UNDER AXIAL COMPRESSION 

By G. A. Thurston and M. A. Freeland 
Martin-Marietta Corporation 

SUMMARY 

A solution is presented for Donnell's equations for an imper- 
fect cylinder subjected to axial compression. Newton's method 
is used to reduce the nonlinear partial differential equations to 
a sequence of linearized equations. The linear equations are 
solved numerically by applying Galerkin's method. 

Buckling loads are computed for several imperfection shapes, 
including the axisymmetric imperfections considered by Koiter. 
Some postbuckled solutions are also reported. 

INTRODUCTION 

Donnell's equations for an imperfect cylinder under axial 
compression are a pair of fourth order nonlinear partial differ- 
ential equations. In this report, the solution of the nonlinear 
problem is reduced to solving a sequence of linear differential 
equations. The linear equations are derived by Newton's method 
or quasilinearization, as it is also known in the literature. 

This direct solution of the governing differential equations 
is in contrast to the energy solutions for finite-deflection 
equations that have been reported in the past. From the theoret- 
ical standpoint, the two approaches reduce to a Galerkin solution 
compared to a Rayleigh-Ritz solution. 

Newton's method has the practical advantage that it leads to 
a numerical solution of matrix arithmetic. The simple numerical 
manipulations make the solution easy to program for a digital 
computer. The present solution is programed to include up to 60 
terms in the Fourier series solution for the normal displacement 

W and could be easily extended to more terms if desired. The 
maximum number of terms retained in a Rayleigh-Ritz solution has 
been reported as 15. 

1 



Among the first to treat.the problem of the imperfect axially 
compressed cylinder were Donnell and Wan (ref. 1). Their work was 
based on Donnell's equations derived earlier (ref. 2). Although 
Donnell and Wan show great physical insight into the problem, 
their numerical results were computed on a desk calculator and, 
consequently, suffer from an insufficient number of free param- 
eters in the energy solution. They also assumed that the imper- 
fection shape is directly proportional to the deformed shape of 
the shell. 

Subsequent investigations (refs. 3 and 4) have closely fol- 
lowed Donnell's method. With digital computers available, there 
seems to be no reason to assume proportionality between the shapes 
of the undeformed and deformed shell, and this restriction is 
dropped in the present analysis. 

Donnell and Wan's approach follows closely the lines estab- 
lished by Von K&-msn and Tsien (ref. 5) when they demonstrated 
the possibility that the cylinder is imperfection-sensitive. 
They showed the existence of equilibrium states at axial loads 
well below the classical buckling load. These postbuckled solu- 
tions of the finite-deflection equations for the perfect shell 
satisfy the pertinent compatibility equation exactly in terms of 
a deflection function represented by double Fourier series with 
undetermined coefficients. The coefficients then follow from 
minimizing the total potential energy. Hoff, Madsen, and Mayers 
(ref. 6) refer to this solution as the Von KCirmsn-Tsien-Leggett 
procedure and note that successive investigators (refs. 6 through 
11) have used more and more terms in the Fourier series approxi- 
mation as digital computers replaced desk calculators. 

It seems appropriate to consider whether another type of 
solution is more suitable for programing on a digital computer. 
Newton's method leading to a Galerkin solution is offered here 
as an alternative. 

The effect of boundary conditions on the prebuckled stress 
distribution in the axially compressed cylinder has received re- 
cent attention (refs. 12 through 14). The interaction between 
boundary conditions and imperfections would be a worthwhile topic 
for investigation. However, the effect of boundary conditions 
is neglected in the present analysis. 
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Koiter (refs. 15 and 16) demonstrates the reduction in buck- 
ling load caused by a single imperfection proportional to the 
axisymmetric buckling mode shape of the perfect shell. He uses 
it as an application of his general buckling theory (ref. 17). 
His upper bound solution is refined as a special case in the 
present report. 

Hutchinson (ref. 18) has extended Koiter's analysis to include 
two parameters in the imperfection shape and also the effect of 
internal pressure. Some of his approximate results are checked 
in this report. 

The one- and two-parameter solutions are valuable because 
they show analytically the relation between imperfections and 
buckling load. As the number of terms in the double Fourier 
series for the imperfection shape increases, it becomes more 
difficult to determine the effect of individual terms because of 
the nonlinear coupling between terms. A numerical solution is 
required, which is the subject of the current investigation. 

SYMBOLS 

f 
ij 

h 

L 

Jx,i 
Y 

M 

mean radius of circular cylindrical shell 

flexural rigidity, Eh3 m4 / 

Young 's modulus 

Airy stress function 

Fourier coefficient in series for F 

shell thickness 

length of circular cylindrical shell 

half-wave lengths in axial and radial di- 
rection, respectively 

number of terms in truncated double Fourier 
series 

4 m = 12(1 - V2> 
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N 

N ,N ,N x Y XY 

6-i 
X 

P 

pC 

u,v,w 

'b 

U 
m 

V 

W 

number of waves in circumferential direc- 
tion 

stress resultants 

average axial stress resultant, positive 
in compression 

ratio of applied axial compression to 
classical buckling load for a perfect 

shell, 

value of p at buckling 

axial, circumferential, and radial dis- 
placements, respectively 

bending strain energy 

extensional strain energy 

total potential energy 

sum of Fourier coefficients in series for 

w/h,C C wij(l - ‘io) 
i=O j=O 

sum of Fourier coefficients for imperfec- 
tion shape, 

radial imperfection from perfect circular 
cylinder 



G. . ,w. . 
1-J rJ 

X>Y 

X'S 

6 ij 

E 

0 

3- 
m a 2 

;z2 h 

V 

v4 

Fourier coefficients in series for w and 
w, respectively 

axial and circumferential coordinates on 
middle surface of shell, respectively 

nondimensional coordinates, 
f; = (ux/a), 6 = @y/a) 

Kronecker delta 

average end shortening 

average end shortening in perfect shell at 
classical buckling load 

middle surface strains 

axial wave number 

axial wave number for a buckling mode from 
linear theory 

Poisson's ratio (v = 0.3 in computed re- 
sults) 

bihannonic operator 

+ 2(a /a 4 

running indices 

THEORY 

Donnell's Equations 

Donnell's equations (ref. 2) for imperfect cylinders can be 
written 

Do4w - ;F,xx - L(F, w + <) = 0 (la) 

~4F+~w,xx+~ L(w, w +. 2G) = 0 (lb) 
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where the nonlinear operator L is defined by 

L(S,T) = %xxT,yy - 2%xyT,xy + %WT,xx (2) 

and the commas in the subscripts denote repeated partial differ- 
entiation with respect to the independent variables following 
the comma. 

Equation (la) is the equilibrium equation summing forces on 
a differential element of the shell in the radial direction, see 
figure 1 for notation. The other two equilibrium equations con- 
sistent with Donnell's assumptions, 

N +N =0 
x,x XY,Y @a) 

N +N =0 
XY,X YIY 

(3b) 

are satisfied identically by the Airy stress function F defined 
by 

NY = Fs xx 

(ha) 

(4b) 

and 

N =-F, 
XY XY 

(4c) 

Equation (lb) is the compatibility equation derived from the 
middle surface strain-displacement relations 

E = u, + $ (wax + 2w 
X X 

>x) w,x (5a) 

E = v, -w-+ 
Y Y a 

$ (w,, + hy) WIy (5b) 

E = +v + 26 
XY U* 

Y ‘X 
+ b (Wsx + 2”,,) w, 

Y 
+ ; (KY 'y) wsx (5c) 
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and the stress-strain relations 

E = k tFsyy - vF 
X 'xx > 

E 
Y = & (bxx - vCyy) 

E = -2(11F 
XY Eh ' XY 

(6a) 

t6b) 

(6~) 

Newton's Method 

The method of solution of the nonlinear equations, equations 
(11, is an extension (ref. 19) of Newton's method for finding 
roots of polynomials. The nonlinear terms in the differential 
equations are expanded in a Taylor's series about an approximate 
solution, and only linear terms are retained. This gives a 
linear system of differential equations for the correction to 
the current approximation. 

Let 
CFmy Wm> denote the m 

th approximation to a solution 

of equations (1). The correction ( GFm,5w 
m> 

to this solution 
is defined by 

F = Fm + 6F 
m (7a) 

w=w + 6w m m (7b) 

Substituting equations (7) into equations (1) and neglect- 
ing nonlinear terms in 6F and 6w obtains 

m m 

D V4("",> - i (6Fm),xx - L(Fm,Gwm) - L(wm + Wm,GFm) = - El (8a) 

v4(sFrn) + e (6Wm),xx + Eh L(wm + +wm) = - E2 (Sb) 

The right sides of equations (8) contain the errors in the cur- 
rent approximation to the solution of equations (1). 
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El 
= D 04wm - ; Fm xx - ( L Fm,wm + ;) (gal 

, 

Eh 2 L(wm,wm + 26) 

After solving equations (8), the iteration proceeds by re- 
plac ing ( Fm,wm) in equations (7) with 

F 
m+l 

= Fm + 6F 
m 

W 
m+l 

=w +6w 
m m 

(9b) 

(13b) 

and solving for (6F dl ,SW~~), etc. If the correction 

( BFrn ,6wm) approaches zero as m increases, the errors E 
1 

and 

E2 
will also approach zero, and the solution will converge to an 

exact solution of the nonlinear equations, equations (1). 

Conversely, the error in the approximate solution can be 
small in some cases and Newton's method will not converge. The 
limiting case occurs when F and w are an exact solution and - 
the variational equations, equations (g), become 

D 04@w) - +,xx - L(F,Gw) - L(w + -c;,6F) = 0 tlla> 

+ Eh L(w + +w) = 0 (lib) 

If the homogeneous equations, equations (ll), have a nontrivial 
solution, then a bifurcation point has been reached with an 
eigenvalue P=P C 

that defines a classical buckling load. 

In approaching an eigenvalue P = PC, using Newton's 

method, the solutions of equations (8) will contain a term of 
the form 

6w = P plwc + . . . m Jc (12) 
PC - P 



* 
where p 

C 
-+ p 

C 
is the eigenvalue of equations (8), np is the 

load increment from the last convergent solution, and wc is 

the component of the last solution equal to the eigenfunction 
* 

associated with p . It can be seen that the load increment must 
C 

be smaller and smaller for convergence as p approaches pc. 

Actually, equation (12) applies for snap buckling where s!E 
de 

vanishes. If the postbuckling mode is orthogonal to the pre- 
buckling mode shape, equations (11) will apply, and there is no 
problem in applying Newton's method. A simple example of the 
latter case is the classical one of the bifurcation from an axi- 
symmetric solution to an asymmetric one. 

Recently, Bueckner, Johnson, and Moore (ref. 20) have shown 
how to modify Newton's method by changing variables for the case 

where 32 
de 

vanishes. As yet, this modification has not been in- 

corporated in the present computer program. The numerical ap- 
proximation used in the program for the buckling loads is dis- 
cussed in Appendix A. 

Any method can be used to solve the linear partial differen- 
tial equations, equations (8). The practical one adopted here 
is the Galerkin method, which leads to a numerical solution. 

Numerical Solution 

The analysis assumes initial imperfection shapes that can be 
represented by a double Fourier series 

CXY m 

ri = h c c iij cos % cos F 
i=O j=() 

(13) 
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The solution is then sought in the form 

w =w m = h i 2 wij cos * cos F (14a) 
ix0 j=O 

F Fm 

2Eah2 

= = -- 

2 
m 

- erl+ f) 2 fij cos + cos F (14b) 
2a2 

i=O i=O 1 
and 

6F m 
= + 5 5 &fij COS 5 COS yi$- 

m i=O j=O 

6w m = h 2 5 Gwij cos + cos F 

i=O j=O 

Substituting equations (14) and equations (15) into equa- 
tions (8), collecting terms, and equating the coefficients of 

cos iX cos jq i=O,1,2,3 ) . . . 

j=O,l,2,3 ,... 

to zero leads to a doubly infinite set of linear algebraic equa- 
tions for the Fourier coefficients 6w 

ij 
and 6f 

ij' 
(the cur- 

rent approximations for the coefficients w.. and f are 
13 ij 

known or assumed). Truncating the doubly infinite set of equa- 
tions to allow for a finite number of coefficients is equivalent 
to a Galerkin solution of equations (8). 

The differential operator L appearing in equations (8) will 
contain terms that are the product of trigonometric series. 
These can be rewritten using the identities 

2 cos A cos B = cos (A + B) + cos (A - B) 

2 sin A sin B = cos (A - B) - cos (A -I- B) 
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Therefore, if 

ka cos kii cos ay 
k=O a=0 

and 

T = c c Tmn cos rnx cos ny 

m=O n=O 

then, 

L(S,T) = 
p2)j2 J< 

4a4 
L (SkJ'Tmn) = 

lh? 5 2 2 2 SkeTmn{ [Jm-kn12 

4a4 k=O a=0 m=O n=O 

[cos(k + m>< cos(6 f n)$ + cos(k - m)< cos(J - n)y] 

+ [am + kn] 2 [ cos(k + m)x cos(J - n)y + cos(k - m>< cos(a + n)?] (16) 

It is tedious to rewrite the order of summation in the Lf 
operator to obtain the coefficients of cos iX cos j;. However, 
rather than writing these terms out explicitly, the computer 
solution is programed to pick up the correct coefficients from 
the L+; operator and insert them in the linear algebraic equa- 
tions. This linearity in the matrix algebra means simplicity in 
programing and is the main advantage of Newton's method. 

Details of the numerical solution are discussed in Appendix 
A. 

Once the solution of the differential equations is obtained, 
other quantities of interest can be computed (see ref. 9 for 
example). The unit end shortening is 

(qEcj) = p + $ k 2 (-) 2 2 i2wij(wij + 2Wij) (1 + "oj) (17) 

i=O j=O 
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The average normal deflection is determined by the coefficient 
W 00' 

which does not appear in the algebraic equations but is de- 

termined from 

W z-* 
00 

m2 + g(f)’ 5 2 j2wij(wij + 2Wij)(l + ‘io) (18) 
i=O j=O 

The strain energy corresponding to membrane stresses is denoted 
by U m 

U 4 2 2 
m m a 

ELah fi 8 h 0 
= 5 + i 2 2 (i2n2 + j2N2)2 ffj (1 + Gio)(l + ooj) (19) 

i=O j=O 

The bending strain energy Ub is 

ub k(zr = +(i)z 2 C (i2n2 + j2N2)2 w:j (1 + oio)(l + ooj) (20) ELah fl 8 
i=O j=() 

The total potential energy V is 

v=v 4-v - 
m b 

RESULTS 

Axisymmetric Imperfection 

Koiter (refs. 15 through 17) has demonstrated the reduction 
in buckling load caused by an axisymmetric imperfection, 

(21) 

2&c 
w = h w20 cos a (22) 
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of the same wavelength as the classical buckling mode. The 
axisymmetric solution is 

w=ph- 2c1x 
l- p w20 'OS a (23) 

The criterion in the numerical solution for bifurcation into an 
asymmetric mode is the vanishing of the determinant of the 
algebraic equations derived in Appendix A, see equations (A12). 
Koiter obtains an upper bound for the critical load by setting 
the first coefficient on the trace of the determinant to zero. 
This coefficient is in the equation for terms coupled with cos 
nx/a cos NY/a. 

Numerical results from a 48-term expansion are compared in 
figure .2 with Koiter's upper bound solution. The buckling loads 
are almost identical. Hutchinson's approximate formula is not 
bad for small imperfections (ref. 18). 

Two-Term Imperfection 

Hutchinson (ref. 18) assumed a two-term series for the imper- 
fection shape 

I-lx ,k+hw w = hwll cos a cos a 20 
cos 21J.x 

a (24) 

in his study of pressurized cylinders under axial compression. 
As in the previous example, the wavelengths correspond to those 
of classical buckling modes. 

Results from the present analysis are compared with Hutchinson's 
approximate solution in table 1. He neglects cubic terms that 
become important as the imperfections become larger; however, his 
paper shows analytically the coupling between the two imperfec- 
tion terms. This coupling allows the individual deflection terms 
to grow faster than the well-known factor P/(1 - P) that ap- 
pears in equation (23) for the single-term imperfection. 

13 



Imperfections with Longer Wavelengths 

Koiter and Hutchinson have shown that for a fixed amplitude 
those imperfections proportional to the buckling modes from 
linear theory produce the greatest reduction in buckling load. 
However, Donnell and Wan (ref. 1) argue that imperfection ampli- 
tudes in test specimens will vary with wavelength; the amplitude 
of the imperfections decreasing as the wavelengths get shorter. 
They introduce an "unevenness factor" U depending only on the 
fabrication process and assume an explicit relation that in our 
notation would be written 

Ua2 
wll = 

(h P 
2 1.5No.5) 

Since the wavelengths from linear theory are relatively 
short, it seemed worthwhile to study more general imperfections. 

Imperfections proportional to the deformed shape of the shell 
in postbuckled unstable equilibrium positions were found to lower 
the buckling pressure for axisymmetric buckling of spherical caps 
(ref. 21). Guided by this prior experience, the next step was to 
find unstable equilibrium positions for the perfect cylinder. 

Kempner's four-term expansion (ref. 9) at p = 0.35 furnished 
a first guess for the numerical iteration procedure. The number 
of terms in the numerical solution was increased in steps to the 
48 terms shown in table 2. The table gives an example of the con- 
vergence of the double Fourier series as more and more terms are 
included. In this case, some of the later terms contribute to the 
third decimal place of the sum of the series. The slow conver- 
gence is a function of the longer wavelengths of the series. The 
leading term has an axial wavelength 9.25 times the checkerboard 
pattern (i/n = 9.25) of the buckling mode from linear theory and 
the number 0.f waves in the circumferential direction is less also 
(N//i = 0.431). 

On the other hand, 18 terms in the series are more than nec- 
essary to provide six significant figures in the sum of the series 
solution for the short wavelengths of the imperfections considered 
by Hutchinson. 
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The end shortening e/cc4 listed in table 2 changes slowly 

with the increase in the number of terms. 

Once the solution at p = 0.35 was known, it became an ini- 
tial guess for solutions at neighboring values of p on the un- 
stable load-end shortening curve shown in figure 3. For the per- 
fect shell, the wave numbers P and N are not known in advance 
for a given value Of p, but are determined by a minimum of the 
total potential energy V defined in equation (21). Solutions 
of the differential equations were obtained for different combi- 
nations of p and N, but the curve in figure 3 does not neces- 
sarily correspond to an exact minimum of the potential energy at 
all points. The potential energy for the solutions in figure 3 
is plotted in figure 4. The minimum postbuckled load in figure 
3is p = 0.1065, which is comparable to Almroth's value (ref. 
14) of p = 0.108. 

The postbuckled solutions are discussed further in Appendix 
B. 

The purpose of obtaining these solutions in the current study 
was to use them as imperfection shapes. Four shapes were selec- 
ted from the postbuckled solutions for the perfect shell. They 
are defined in table 3. They are normalized so that the algebraic 
sum of the coefficients is unity, w = 1.0. This defines an im- 
perfection with a total amplitude approximately equal to the 
thickness of the cylinder. 

Buckling loads were computed for shells of these four imper- 
fection shapes with various values of Q, n, and N to find 
the effect of varying amplitudes and wavelengths. The results 
are shown in figures 5 through 8. 

The decrease in buckling loads from these imperfections is 
not as pronounced as the reduction for the same amplitude from 
the imperfections considered by Koiter (ref. 16) and Hutchinson 
(ref. 18). However, it appears that any imperfection shape with 
amplitude equal to the shell thickness will reduce the buckling 
load to approximately 50 percent of the classical value. 
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Comparison with Experiment 

Most of the cylinders that have been fabricated and tested 
have been imperfect in shape. Only the new techniques, such as 
electroplating metal on a wax mandrel or spinning a plastic 
specimen inside of a cylindrical mandrel, have produced near 
perfect shells. Unfortunately, most experiments have not in- 
cluded a careful inspection to determine the exact shape of the 
test specimens. 

Transducers now afford a rapid means of inspection through 
measuring changes of reluctance in the air gap between a pickup 
and the shell or measuring changes in inductance of a probe. 
The sensitivity of these methods must be improved before a com- 
plete check with theory will be possible. 

The basic problem is related to the extremely short wave- 
lengths that must be measured to check Koiter's contention that 
the most important Fourier coefficient in the imperfection shape 
is the one with the wavelength of the axisymmetric buckling mode 
for the perfect shell. As a typical example, consider the speci- 
mens tested by Babcock and Sechler (ref. 22). 

Their specimens had nominal dimensions: L = 10 in., a = 4.0 
in. , and h = 0.0045 in. These dimensions give i = 26.95, and 
classical theory predicts half wavelengths of a 

X 
= iy = 0.465 

in. for the buckling mode cos (Lx/a) cos (cy/a). This is 
equivalent to N = 27 complete waves running around the circum- 
ference of the shell. For the axisymmetric mode, cos (2Ex/a), 
the axial half wavelength Jx is 0.232 in. 

The inspection data published by Babcock and Sechler (ref. 
22) do not allow any accurate estimate of the amplitudes of im- 
perfections in shape at these short wavelengths. 

CONCLUSIONS 

Newton's method has proved to be a practical means of in- 
creasing the number of terms in the Fourier series solution of 
Donnell's equations for imperfect cylinders. 
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The rate of convergence of this double Fourier series de- 
pends on the ratio of the wave numbers p and N to the wave 
number fi related to the linear buckling modes. As the wave 
numbers decrease below 0, the rate of convergence also de- 
creases, and more terms M are needed in the series for an ac- 
curate solution. 

The convergence of the series becomes part of the p.roblem 
in trying to correlate theory and experiment for imperfect shells. 
In the series for the imperfection shape, the largest measured 
amplitudes are in terms with lower wave numbers while Koiter and 
Hutchinson have shown that even small terms at large wave numbers 
reduce the buckling load substantially. 

This would imply that M should be a large number when study- 
ing actual test specimens. 

The experimental problem of separating imperfections with 
high wave numbers from experimental "noise" adds to the overall 
problem. 

The postbuckled equilibrium states of the axially compressed 
cylinder are of academic interest. Here, the proper theory seems 
to be the main question rather than any insurmountable difficulty 
in solving the final equations. 

MARTIN-MARIETTA CORPORATION 
MARTIN COMPANY 

Denver, Colorado, March 15, 1966 
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APPENDIX A 

COMPUTER SOLUTION 

The formal solution of Donnell's equations using Newton's meth- 
od reduces to two doubly infinite sets of algebraic equations for 
the unknown double Fourier series coefficients. The computer pro- 
gram is written to determine a finite number of these coefficients 
by writing a finite set of algebraic equations, solving the equa- 
tions, and testing the solution vector for convergence in the iter- 
ation procedure of Newton's method. 

The doubly infinite set of algebraic equations follow from 
setting coefficients of cos iX cos jy to zero after combining 
equations (14) and (15) in equations (8) 

ij + F 2 2 i u 8f ij 1 
J; ;'r 

cfki' owmn) + L (Wkk? + Wka' 6fmn = E l(Al) 
- - cos ix cos jy 

m2hv2N2 ;k i'r 
+ 

8a L (Wkd + Wkk? 
6W mnJ = E2 (A’3 

where 

;k c0 O” 22 
El = c c I [( icI + j2N2 2m2a pi2y2 - h ("i j + wij + 'ij ) 

i=O j=O 
ij 

+ 2m2a2 
- - 

m2a 22 * 
h2 i2u2f i j 

I[ 
cos ix cos jx 

11 

+ 2h p N L (Wkj + 'kj' fmn ) (A3) 

f< 
E2 = - 5 2 [(i2p2 + j2N2)2 fij - m2~2M2 wij ] cos G cos j; 

i&J j-0 

m2h 2 2 * 

-16a iJ N L cWk& + 2wk.!$' Wmn > 
(A&) 

18 
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APPENDIX A 

Since the solution of Donnell's equations is sought in the 
form of two double Fourier series, the coefficients appear in the 
algebraic equations as doubly subscripted variables. However, in 
writing the FORTRAN computer program for a finite set of these co- 
efficients, it became apparent that it is simpler to treat the co- 
efficients as single subscripted variables. Each ij combination 
has a single subscript 

ij=: (ij) =ir j r = 1,2,3....M 
r r 

The single r subscript is then used for each Fourier coef- 
ficient of that ij combination (wr =w ij, fr = fij, etc, when 

i= i 
r 

and j = 
jr>' 

With this notation, the L operator defined in equation (16) 
becomes the product of two sums each containing M terms. This 
product is found in the computer solution term by term. Only terms 

t< 
in L that correspond to one of the M combinations of ij are 
of interest in the Galerkin solution. The program searches the 
list of input for ir and j 

r 
and stores the subscripts for which 

I i=i+i 
I 

i = i 
r I 

-i 
r S t S tl 

1 or 
jr = js + jt I jr = ljs - jtl 

and for which 

I 
i=i+i 

I 

j. = i 
r I 

-i 
r S t S tl 

or 

jr = I&. - jt j =j fjt 
r S 

It is a simple matter to equate the M coefficients to zero 
in each of equations (Al) and equations (A2), once it is known 
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APPENDIX A 

from equations (A6) and equations (A7) that the s 
th 

and t 
th 

Fourier coefficients appear in the r 
th 

equation. 

The algebraic equations are programed in matrix notation. The 
equations are first written in extended form and then contracted 
to a single matrix equation. The extended form is 

I( 2 
6wr 

2m2a -- 
h 

I I 6f 
m2a 2 2 

r --TO 

I + 2m2a2 2 .2 
h2 ’ ‘rsfr I I 

I I”1 I Ibwrl = I(El)rl w3) 

3 
m-h 22 

+FPN l('l( Ibwr[ = [(E2)r( r = 1~29.e.M (A9 

The single vertical lines I I denote column vectors and the 
double lines denote square matrices. In the above equations, ma- 
trix A equals matrix C; they are given separate names in the pro- 
gram to provide storage locations for the subsequent manipulations. 

Each equation in the set is divided by 

terms collected and stored in the form 

- I IA?:1 1 lbfrl + I 

lhfrl + l 

lBKl l lbwrl = ICE:Jri (AW 

(‘*I) Iswrl = ICE;jri (All) 

Eliminating 6fr obtains 

izu2 + jzN2 
2 

and the 

II B* + ~'~~"11 16wr[ = l(EF),l + 1 (A*JI I(E~)~J r = 1,2,...~ (Al21 



APPENDIX A 

The indicated matrix multiplications are performed along with the 
matrix inversion to solve for the SW r' The 6f follow from back 
substitution in equation (All). 

r 

The aforementioned matrix algebra has been spelled out in de- 
tail to make a clearer comparison with the Von K&&n-Tsien-Leggett 
procedure. Mathematically, the Calerkin solution and Rayleigh- 
Ritz solution are equivalent. The Newton-Raphson iterative solu- 
tion applied by Almroth (ref. 14) leads to almost the same linear 
equations as equations (A12). The difference is the amount of 
algebraic manipulation performed by the analyst compared to the 
amount done by the digital computer. 

In the Von Ksrma%-Tsien-Leggett procedure, an equation equiv- 
* 

alent to equations (All) is written with the f and C set r 
equal to zero. Then solving for 6f r' making fr = 6f , and sub- r 
stituting in the potential energy expression equation (21) and ap- 
plying the minimization procedure lead to a set of nonlinear alge- 
braic equations that are equivalent to setting the right side of 
equations (A12) equal to zero. Then, if the Newton-Raphson iter- 
ative procedure is used on the nonlinear algebraic equations, the 
result is equivalent to equations (A12). The difficulty is that, 
to differentiate the coefficients of the nonlinear algebraic equa- 
tions in the application of the Newton-Raphson technique, the co- 
efficients must be known explicitly in terms of the unknown Fourier 
coefficients w ij' 

In the procedure used here, Newton's method is applied direct- 
ly to the Donnell differential equations and the matrix algebra is 
strictly a numerical operation to be performed by the computer pro- 
gram. This means that the number of terms M allowed in the Fourier 
series for w is limited only by computer storage and the numeri- 
cal accuracy of the matrix subroutines. 

The classical definition of a critical point where the homo- 
geneous variational equations, equations (ll), have a nonzero so- 
lution is approximated in the numerical solution by the vanishing 

of the determinant of the matrix, (IB*+ A*C*I(, in equations (A12) 
when the error vector on the right side is zero. 
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For snapthrough buckling, the critical point cannot be reached 
exactly and buckling loads p reported in the text are computed 
by using a Lagrange interpolation formula for p as a function of 
the determinate. Extrapolating to the point where the determinate 
is zero defines the critical value of p. For bifurcation buckling, 
the load can be varied to approach the zero determinant within any 
desired tolerance. 

The best guess at a solution for starting the iteration pro- 
cedure is a solution for a nearby set of parameters. The program 
stores the last solution obtained while new input data can be read 
to change p, u, N, M, or any of the subscripted variables. 
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APPENDIX B 

POSTBUCKLING SOLUTIONS 

In studying postbuckled solutions for shallow spherical caps 
(refs. 19 and 21) under external pressure, it was found that a 
good assumed solution for starting the Newton's method iteration 
is the inverted shape that satisfies the nonlinear equations for 
the shell but not the boundary conditions. With this assumed 
solution, Newton's method converges to the stable postbuckled 
solution rather than the prebuckled solution or the unstable post- 
buckled solution. 

It is natural to ask if a similar situation exists for the 
axially compressed cylinder. Is there a simple assumed solution 
that leads Newton's method to converge to a solution defining the 
postbuckled equilibrium configuration? 

The solution that suggests itself is based on the deformed 
shell shape proposed by Yoshimura (ref. 23). This is a concave 
polyhedron formed by connecting plane triangles. Yoshimura de- 
rives the relations that must exist for the deformation to be in- 
extensional. A repeating section of the deformed shell is sketched 
in plan-form in figure 10. The edges of the triangles are shown 
as dashed lines. The maximum deflections from the cylindrical 
shape, consistent with the Donnell approximations, are 

dl 
= .i a,r2 and 

2 
d 2 afl =-- 

3 2N2 2 32N2 

where each circular cross-section has been deformed into an N- 
sided polygon. 

Then, the deflected shape w in the first quadrant 
X-Y coordinates is 

2 
aJt w=- 
2N2 

++<1 
Y x- 

of the 

(Bl) 

(B2) 

a = an/N 
Y 
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The Fourier series expansion for this function is 

2 cos iclx cos iNy 2iw 
a 2 a a (B3) 

i 

This is a relatively simple expansion and seems to fit the need 
for an assumed solution. When equation (B3) is substituted into 
equation (All) to find the coefficients of the stress function 
f 

ij 
that make the error E2 

a minimum, the result is 

f =0 
ij ' 

This result is not surprising since it merely states that the 
Fourier series expansion of this inextensional shape satisfies 
the compatibility equation. 

The series equation (B3) and f.. = 0 does not satisfy the 
1J 

equilibrium equation. Setting the first term in the vector El 

in equation (All) to zero gives an estimate for an assumed value 
of P in terms of the wave numbers. Several trial solutions 
were made following this scheme, but none converged. Another 
similar approach was tried using the expansion in equation (B3) 
perturbed by the multiplier (1 + e) where e is a small con- 
stant. This gives a simple expression for the f.. proportional 
to the assumed w 1J 

ij' 

These trial solutions also did not converge. 

Finally, a solution denoted as Case 7 by Hoff, et al. (ref. 6) 
was used as an assumed solution. The solution has 15 Fourier co- 
efficients in the expansion for w. Seven have subscripts i = j 
and six have i = 2k, j = 0, k = 1,2,3,...6. This solution is 
for p = 0.07, which is lower than any value obtained for p 
by previous investigators. This solution was used as an assumed 
solution in the current computer program. The input data allowed 
for 49 terms in the expansion for w with the terms in addition 
to the first 15 assumed as zero. 
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This solution did not converge either. The lack of convergence 
was either due to the determinant of the algebraic equations, 
equations (A12), approaching‘zero near a critical load or because 
no solution exists at these values of p, u, and N. The first 
iteration of the numerical solution showed that the 15-term solu- 
tion of reference 6 contains errors from neglecting terms j # i 
and j #O since the determinant was large but the correction vec- 
tor for w was also relatively large in the previously neglected 
terms. Successive iterations appeared to converge until the sixth 
where the determinant almost vanished. Later iterations diverged. 

The postbuckled deformation curve shown in figure 3 was ob- 
tained by first obtaining a solution at p = 0.35. The assumed 
solution for Newton's method was taken from Kempner's four-term 
expansion (ref. 9). The number of terms in the computer solution 
was gradually increased to 48. Once the solution at p = 0.35 
was available, it was a simple matter to vary p using previous 
solutions as a first guess. 

The lowest value of p on the postbuckled load-deflection 
curve in figure 3 is p = 0.1065. This is comparable to Almroth's 
lower buckling load of p = 0.108 obtained with 10 terms in the 
series for w. The solution at p = 0.1065 satisfies the dif- 
ferential equations but is not a minimum energy solution. The 
value of N/iT was arbitrarily restricted to 0.288. The reason is 
that as p decreases, the value of N to achieve minimum poten- 
tial energy also decreases. This leads to a conflict with Donnell's 
basic assumption that N is relatively large. 

Since the purpose of the present investigation was to study 
the effect of initial imperfections on the upper buckling load, 
the question of the accuracy of Donnell's equations in the post- 
buckling range was not pursued. The solution obtained from the 
program at p = 0.1067, p/p = 15, and N/p= 0.288 is listed 
in table 4. It is compared with the coefficients of the Yoshimura 
shape defined by equation (B3). For the long wavelengths asso- 
ciated with this deflected shape, the terms in the Fourier series 
decrease slowly in magnitude, so that 48 terms is not a large num- 
ber. 

It appears that the proper value of the minimum postbuckling 
load is still an open question. It might be pointed out that the 
solutions of Donnell's equations could provide the first approxi- 
mation to a solution of an improved theory by Newton's method. 
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TABLE 1 

TWO-PARAMETER IMPERFECTION WITH SHORT WAVELENGTHS 

(,&I = 1.0 N/; = 1.0) 

Imperfection coefficients Buckling load, p, 

w20 wll Hutchinson (ref. 18) Present analysis 

.04 .O .70 .83 

.O .06 .70 .72 

.012 -.04 .70 .707 

.O .2 .50 .55 

.017 -.167 .50 .53 

.047 -.095 .50 .54 

.L45 -.145 .30 .465 

Magnification factors from finite deflection theory 
Imperfection coefficients Load Linear factor Nonlinear 

w20 wll 
AL 

P 1-p w20/w20 w11 hl 

.Oli -.I67 .45 .818 1.970 1.11Y 

.50 1.000 3.175 1 .b42 

.52 1.083 4.480 2.176 

.047 -.095 .45 .818 1.002 1.409 

.50 1 .ooo 1.369 2.103 

.52 1.083 1.638 2.664 

.I45 -.145 .30 .429 .491 1.095 

.35 .539 .669 1.745 

.40 .667 I .075 3.563 



TABLE 2 

CONVERGENCE OF SERIES FOR POSTBUCKLED SOLUTION FOR PERFECT SHELL 

w 00 

E’%? 
W 

Fourier subscripts 

r 
1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

i 

1 

2 

1 

3 

2 

0 

4 

0 

3 

2 

1 

0 

6 

5 

4 

4 

3 

2 

1 

0 

8 

7 

6 

5 

j 
1 

2 

3 

1 

0 

2 

0 

4 

3 

4 

5 

6 

0 

1 

2 

4 

5 

6 

7 

8 

0 

1 

2 

3 

(p = 0.35 ;/p = 9.25; N/i = 0.431) 

Kempner 
(ref. 9) 

.78 

-i- Numb of terms j 
8 15 

.4011 .1883 

present 
24 

.0964 .0374 

.6 .4122 .3936 .3851 .3810 

7.7 

w.. 
1J 

7.1169 

w.. 
1J 

8-terms 

4.593 

.625 

.047 

.711 

.613 

.355 

.174 

-.00083 

6.0868 5.3372 4.7206 
w 

ij w.. 
13 

W 
ij 

6.67 

0 

0 

0 

.667 

.334 

15-terms 

3.1556 

.5834 

.0851 

.5764 

.3642 

.2797 

.I829 

.0031 

-0662 

.0023 

-.OOll 

- .00009 

.0951 

.2941 

.3998 

!4-terms 

2.4122 

.4892 

.0882 

.4367 

.2409 

.2214 

.1401 

.0056 

.0808 

.0081 

-.0013 

-.00028 

.1026 

.2653 

.3764 

.0031 

-.0013 

-.0005 

-.000075 

-.000002 

.0615 

.1610 

.1928 

.0548 

8-terms 

1.8749 

.3810 

.0720 

.3202 

.1544 

.1633 

.0964 

.0049 

.0739 

.0085 

-.0024 

-.0007 

.0807 

2044 

.3162 

.0056 

-.0025 

-.0014 

-.0003 

-.000014 

.0663 

.1502 

.1860 

.0635 
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Fourier Subscriots 
r 

- 
25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

i j 
5 5 

4 6 

3 7 

2 8 

1 9 

0 10 

10 0 

9 1 

8 2 

7 3 

6 4 

6 6 

5 7 

4 8 

3 9 

2 10 

1 11 

0 12 

12 0 

11 1 

10 2 

9 3 

8 4 

7 5 

Kempner 
(ref. 9) 

W. 
lj 

T 
TABLE 2. - CONCLUDED 

Number of terms in present analysis 

8 -. 
w.. 1J 

8-terms 

15 
W ij 

15-terms 

24 

wij 
24-terms 

48 
W 

ij 
48-terms 

-.0024* 

-.0012 

-.00027 

-,000026 

.0000041 

.0000010 

.0511 

.1109 

.1113 

.0430 

.0023 

-.00087 

-.00021 

-.000024 

.0000032 

.0000019 

.00000037 

.00000001 

.0321 

.0745 

.0646 

.0228 

-.00035 

-.0021 
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TABLE 3 

IMPERFECTION SHAPES FROM SOLUTION ON UNSTABLE BRANCH OF PERFECT CYLINDER 

Shape I I Shape II Shape III Shape IV 

Parameters in perfect shell solution 

P .30 .40 .5 .6 

ih 20. 17.5 10. 10. 

N/i .288 .288 .288 .288 

W 9.528 6.521 3.216 2.594 

r i j Normalized mode shapes 6 = 1 

w.. W W 
1J . . 1, ij 

W ij 

11 1 .352 .305 .1257 .112 

2 2 2 .0938 .1165 .1636 .179 

3 1 3 - .0219 .0291 .0539 .050 

4 3 1 .0594 .0467 .0327 .0276 

5 2 0 .0293 .0217 .0156 .0130 

6 0 2 .0384 .0435 .0655 .0595 

7 4 0 .0195 .0160 .00138 .0120 

8 0 4 .0302 .00524 .00116 .0113 

9 3 1 .0238 .0333 .0701 .0745 

10 2 4 .00568 .0103 .0235 .023 

11 1 5 .000754 .00298 .00099 ,0103 

12 0 6 -.OOOll .000234 .00018 .0021 

13 6 0 .0157 .0130 -01111 .0097 

14 5 1 .0376 .0306 .0255 .0223 

15 4 2 .0727 .0740 .0472 .0450 

16 4 4 .00481 .00944 .0245 .0256 

17 3 5 .00052 .00254 .00948 .OlOl 

18 2 6 -.00023 .000388 .00343 .0044 

19 1 7 -.00014 0 0 .0012 

20 0 8 0 0 0 0 

21 8 0 .0119 .OlOO .00942 -0087 

22 7 1 .0268 .0228 .0211 .0193 

23 6 2 .0396 .0375 .0285 .0270 

24 5 3 .0229 .0331 .0504 .0575 
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TABLE 3. - CONLCUDED 
- - 

Shape I Shape II Shape III Shape IV 

Parameters in perfect shell solution 

r i j 
25 5 5 

26 4 6 

27 3 7 

28 2 8 

29 1 9 

30 0 10 

31 10 0 

32 9 1 

33 8 2 

34 7 3 

35 6 4 

36 6 6 

37 5 7 

38 4 8 

39 3 9 

40 2 10 

41 1 11 

42 0 12 

43 12 0 

44 11 1 

45 10 2 

46 9 3 

47 8 4 

48 7 5 

T 
W. 

lj 

.00022 

-.00023 

-.00012 

0 

0 

0 

.00856 

.0194 

.0242 

.01824 

,00369 

-.00019 

0 

0 

0 

0 

0 

0 

.00543 

.0130 

.0149 

-0118 

-00236 

0 

Normalized mode shapes i = 1 

w.. 
iJ 

.00186 

.00241 

0 

0 

0 

0 

.0074 

.0170 

.0233 

-0260 

.0081 

0 

0 

0 

0 

0 

0 

0 

.00505 

.012 

.0149 

.0165 

.00565 

.00112 -~ 

w.. 
13 

.00796 

.00271 

0 

0 

0 

0 

.00755 

.0169 

.0206 

.0299 

.0208 

.00171 

0 

0 

0 

0 

0 

0 

.00574 

.0129 

.0151 

.0183 

.0139 

.00558 

wij 

,0087 

.0032 

0 

0 

0 

0 

.0075 

.0163 

.0205 

.0336 

.0233 

.0021 

0 

0 

0 

0 

0 

0 

.0062 

.0133 

.0157 

.0207 

.0162 

-0064 
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TABLE 4 

POSTBUCKLED SOLUTIONS 

Yoshimura (ref. 23) Hoff 
inextensional et al. 
shape (ref. 6) Present analysis 

'P .0707 .12 .12 -1067 

ih 42.7 i5. 15. 15. 

NIP .118 .288 .288 .288 

t lEce 5.62 1.110 .582 .823 

W 236. 33.4 27.2 29.8 

i j w..N 2 h I 
wijN2h a 

I 2 
a 

=J 
wijN h 

/ 
a w..N'h a 

13 I 
w..N2h a 

13 I 
0 0 .823 .685 .3010 .1383 .2208 

1 1 2.0 2.060 1.4779 1.0047 1.2819 

2 2 -.5 -.466 -.1172 .0339 -.0506 

1 3 0 .02790 .0204 -.0415 -.0190 

3 1 0 -.0625 .2438 .1972 .2280 

2 0 .: .511 .4067 .1951 .3013 

0 2 0 0 -.0872 .0028 -.0438 

4 0 .125 .0866 .1558 .0884 .0215 

0 4 0 0 .0049 .0045 .0102 

3 3 .222 .1580 .0084 -.0360 -.0202 

2 4 0 0 .0097 .0083 .0191 

1 5 0 0 - .0094 .0058 -.0047 

0 6 0 0 .0016 -.OOll -.OOlO 

6 0 .05555 .02800 .0783 .0529 .0063 

5 1 0 0 .0914 .0967 .0998 

4 2 0 0 -.0615 .0197 -.0250 

4 4 -.1250 -.0681 .0087 .0070 .0162 

3 5 0 0 -.0085 .0052 -.0045 

2 6 0 0 .0031 -.0021 -.0018 

1 7 0 0 .00001 -.0007 .0014 

0 8 0 0 -.0002 .0002 - .00009 

8 0 .03125 .00894 .0407 .0317 .0371 

7 1 0 0 .0374 .0507 .0473 

6 2 0 0 - .0399 -.0019 -.0251 

5 3 0 0 .0052 - .0299 -.0168 
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TABLE 4. - CONCLUDED 

Present analysis 

-.000004 

-.000002 
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FIGURE 2. -- EFFECT OF AXISYMMETRIC IMPERFECTION ON AXIAL BUCKLING LOAD 

37 



.8 

.6 

a 

.4 

.2 

0 .2 .4 .6 .8 

E E 
I C& 

FIGURE 3. -- LOAD-END SHORTENING CURVES FOR PERFECT SHELL 
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FIGURE 4. -- TOTAL POTENTIAL ENERGY vs mm FOR PERFECT swm 
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FIGURE 5. -- BUCKLING LOAD VS CIRCUMFERENTIAL WAVE NUMBER FOR VARIOUS 
IMPERFECTION AMF'LITUDES 
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FIGURE 6. -- BUCKLING LOAD VS CIRCUMFERENTIAL WAVE NUMBER FOR VARIOUS 
IMPERFECTION AMPLITUDES 
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FIGURE 7. -- BUCKLING LOAD VS CIRCUMFERENTIAL WAVE NUMBER FOR VARIOUS 
IMPERFECTION AMPLITUDES 
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FIGURE 8. -- BUCKLING LOAD VS CIRCUMFERENTIAL WAVE NUMBER FOR VARIOUS 
IMPERFECTION AMPLITUDES 
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FIGURE 9. -- BUCKLING LOAD VS RATIO OF AXIAL WAVE NUMBERS FOR GIVEN 
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